Watering hole

Farmer John has decided to bring water to his N pastures which are conveniently numbered $1, \ldots, N$. He may bring water to a pasture either by building a well in that pasture or connecting the pasture via a pipe to another pasture which already has water.

Digging a well in pasture i costs W_{i}. Connecting pastures i and j with a pipe costs $P_{i, j}$.
Determine the minimum amount Farmer John will have to pay to water all of his pastures.

Input

The first line contains a single integer $N(1 \leq N \leq 300)$. N lines follow, the i-th of them contains a single integer $W_{i}\left(1 \leq W_{i} \leq 100000\right)$. Another N lines follow, the i-th of them contains N space-separated integers, the j-th of them being $P_{i, j}\left(1 \leq P_{i, j} \leq 100000, P_{i, j}=P_{j, i}, P_{i, i}=0\right)$.

Output

Output a single line with a single integer that is the minimum cost of providing all the pastures with water.

Example

4				vstup	
4					
4					
4					
3					
0	2	2	2		
2	0	3	3		
2	3	0	4		
2	3	4	0		

Farmer John may build a well in the fourth pasture and connect each pasture to the first, which costs $3+$ $2+2+2=9$

